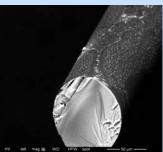


Methods and Tools for Monitoring Groundwater Impacts


Christina Lopano NETL - RIC

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016

NETL Research Presentations and Posters

TUESDAY, AUGUST 16, 2016

- 12:40 PM Monitoring Groundwater Impacts Christina Lopano
- 1:55 PM Multi Variate Examination of the Cause of Increasing Induced Seismicity Kelly Rose
- 4:40 PM Exploring the Behavior of Shales as Seals and Storage Reservoirs for CO₂ Ernest Lindner
- 5:05 PM Risk Assessment for Offshore Systems <u>Kelly Rose</u>
- 5:30 PM Metal-based systems in Extreme Environments Jeff Hawk
- 6:15 p.m. Poster Session
 - Kelly Rose Developing a carbon storage resource assessment methodology for offshore systems
 - Doug Kauffman Catalytic Conversion of CO2 to Ind. Chem. And eval. Of CO2 Use and Re-Use
 - Liwei Zhang Numerical simulation of pressure and CO2 saturation above an imperfect seal as a result of CO2 injection: implications for CO2 migration detection

WEDNESDAY, AUGUST 17, 2016

- 12:30 PM MVA Field Activities Hank Edenborn
- 1:20 PM Microseismicity –<u>Erik Zorn</u>
- 2:35 PM Resource Assessment Angela Goodman
- 2:35 PM Understanding Impacts to Air Quality from Unconventional Natural Gas <u>Natalie Pekney</u>
- 4:05 PM Improving Science-Base for Wellbore Integrity, Barrier Interface Performance <u>Nik Huerta</u>
- 5:20 PM Wellbore Integrity and Mitigation <u>Barbara Kutchko</u>

THURSDAY, AUGUST 18, 2016

- 1:00 PM Advances in Data Discovery, Mining, & Integration for Energy (EDX) Vic Baker
- 1:25 PM Methods for Locating Legacy Wells <u>Garrett Veloski</u>
- 2:40 PM Reservoir Performance Johnathan Moore
- 3:05 PM Geochemical Evolution of Hydraulically-Fractured Shales <u>Ale Hakala</u>

<u>https://edx.netl.doe.gov/carbonstorage/</u> <u>https://edx.netl.doe.gov/offshore/</u> https://edx.netl.doe.gov/ucr/

Methods & Tools (Task 8): Natural geochemical signals to monitor leakage to groundwater

FY 2016 Team

- J. Rodney Diehl, NETL-RIC
- Hank Edenborn, NETL-RIC
- Djuna Gulliver, NETL-RIC
- Ale Hakala, NETL-RIC
- Christina Lopano, NETL-RIC
- Dustin McIntyre, NETL-RIC
- Paul Ohodnicki, NETL-RIC
- Ki-Joong Kim, ORISE-NETL
- James Gardiner, ORISE-NETL
- Christian Goueguel, ORISE-NETL
- Thai Phan, ORISE-NETL
- Mengling Stuckman, ORISE-NETL
- Brian Stewart, U.Pitt, ORISE
- Shikha Sharma, WVU, ORISE
- Jinesh Jain, AECOM NETL
- R. Burt Thomas, AECOM NETL

Technical approach employs a multidisciplinary team (chemists, geologists, microbiologists, materials engineers) to develop and demonstrate novel tools and techniques for MVA

Benefit to the Program

- Program Goals:
 - Validate/ensure 99% storage permanence.
 - Develop best practice manuals for monitoring, verification, accounting, and assessment; site screening, selection and initial characterization...
- Project benefits:
 - There is a need to be able to quantify leakage of CO₂ to the near surface and identify potential groundwater impacts. This project works to develop a suite of complementary monitoring techniques to identify leakage of CO₂ or brine to USDW's and to quantify impact.

Project Overview: Goals and Objectives

Monitoring Groundwater Impacts – What suite of measurements and/or tools can used in groundwater to detect CO₂ and/or brine leakage and to evaluate the impact?

Develop and apply metal isotope tracers for QMVA

Task

8

Task

9

- Develop & test novel materials and sensors for in-situ monitoring
- Better understand physical-chemical-biological parameters impacting signals for geochemical tracers
- Test and validate the use of CO₂ monitoring devices under field conditions
- Establish the utility of metal isotopes to track migration of a CO_2 plume 12:30pm 6
- Understand natural variability in background

Wed

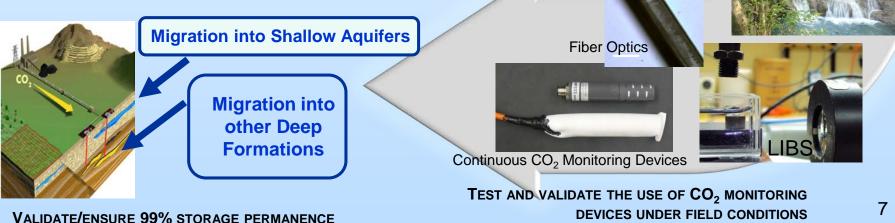
Monitoring Groundwater Impacts

UNDERSTAND NATURAL BACKGROUND VARIABILITY

Key menait Base Base Boundaries

ESTABLISH THE UTILITY OF ISOTOPES TO TRACK MIGRATION

OF A CO₂ PLUME


Sile

Thermal springs

(Natural Analog)

EOR Fi

- Develop & demonstrate a suite of geochemically-based monitoring strategies for groundwater systems
- Statistical understanding of natural signals in CO₂ storage systems.
- Determine sensitivities of techniques in real world conditions

Geochemical Monitoring Tools

1. Natural Geochemical Tracers in Groundwater

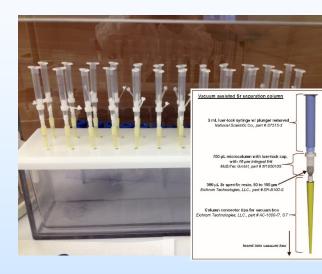
- **TRL 3-4**
- develop and demonstrate a protocol for the use of a combination of natural geochemical tracers (e.g., isotopic, chemistry, trace elements, etc.) to monitor groundwater systems
- Assessment & Validation of shallow Continuous CO₂ Monitoring Devices
 - understand the response and limitations of CO₂ monitoring devices (volumetric methods and direct measurement via NDIR) relative to CO₂ detection
- Development and Assessment of LIBS for In-situ Measurement of CO₂ Impacts in Groundwater
 - Use LIBS as a tool to monitor chemical signals in groundwater (in-situ) that reflect potential impacts to groundwater resulting from the introduction of CO₂ and/or brine.
- 4. Development and Assessment of Novel Fiber-Optics Technologies for Chemical Sensing
 - develop and demonstrate robust fiber-optic based materials & tool(s) capable of sensing (at elevated P & T) the introduction of CO₂ and/or brine into overlying formations or groundwater systems

Groundwater Monitoring:

Metal Isotope Tracers

NETL ORD - Application to Complex Field Samples

- Metal isotope systems: track fluid-rock interaction, fluid origin, fate & transport. Use distinct isotope end-members to trace movement of plume in injected formation & to monitor leakage into overlying formations. Examples:
 - Mineral-fluid exchange (e.g., ⁸⁷Sr/⁸⁶Sr, ⁷Li/⁶Li, ²³⁴U/²³⁸U)
 - Subsurface redox conditions (e.g., ⁵⁶Fe/⁵⁴Fe, ²³⁸U/²³⁵U)
 - Origin and environmental tracking of brines (e.g., ⁸⁷Sr/⁸⁶Sr, ⁷Li/⁶Li, ¹¹B/¹⁰B)
- Isotopes available FY16 (MC-ICP-MS):
 - ⁸⁷Sr/⁸⁶Sr
 - _ ⁷Li/⁶Li
 - 234U/238U and 235U/238U
 - _ ¹¹B/¹⁰B
- Type of samples: water & rock
 - Field sampling: filtered and acidified samples
 - Water: surface waters or monitoring wells
 - Separations from matrix (NETL RIC methods)
 - Run using MC-ICP-MS

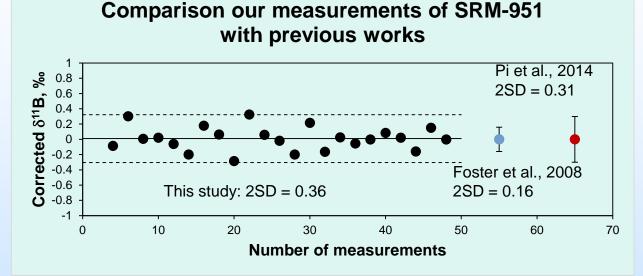

Pls – Hakala, Phan, Stewart



NETL's Thermo Scientific NEPTUNE PLUS MC-ICP-MS at University of Pittsburgh, Dept. of Geology & Environmental Science

Metal Isotopes: Past Work

Robust analytical procedures are fully developed for Sr, Li, B, U isotopes



Sr isotope separation setup (Wall et al., 2013) Typical Reproducibility: 2SD=0.1‰ (24 samples/16 hours) Li isotope separation setup (Phan et al., 2016) Typical Reproducibility: 2SD=1.0‰ (16 samples/24 hours) U isotope separation setup (Phan et al., submitted) Typical Reproducibility: 2SD=0.1‰ (24 samples/48 hrs)

Metal Isotopes: B Methodology

B isotopes are purified using sublimation method

Purified B isotopes

B isotope separation setup Sample volume: 50 µL Temperature: 98 °C Duration: >12 hrs

24 samples/24 hours

Measurements of reference samples:

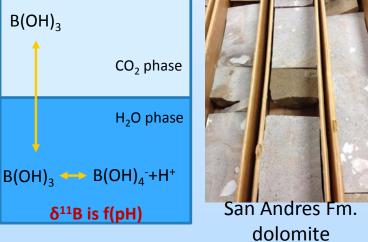
Seawater (NASS-6):Oil produced water:Rep 1: 40.3 %Rep 1: 19.0 %Rep 2: 40.4 %Rep 2: 18.4 %Rep 3: 40.4 % $\delta^{11}B = 18.7 \pm 0.7$ $\delta^{11}B = 40.4 \pm 0.1$ $\delta^{11}B = 18.7 \pm 0.7$

\rightarrow consistent to published value 39.7 ± 0.4

Typical Reproducibility: 2SD=1.0‰

12

Pls – Hakala, Phan, Stewart


B Isotopes: Lab Experimentation

Phase systems constraining $\delta^{11}B$ behavior

- Hypotheses
 - Boron species partition between the CO_2 and brine phase.
 - Boron isotope signals in groundwater/formation minerals may permanently record CO₂ plume interaction.
 - δ¹¹B : a natural tracer of integrated long term leakage.
- Experimental Approach
 - Determine the pH, T, P behavior of boron isotope partitioning between CO₂ and brine.
 - Rocking Autoclave
 - Sample each fluid phase
 - MC-ICPMS analysis of $\delta^{11}B$

Pls – Thomas, Lopano, Phan

13

A. Triplehorn et al., 1991, B. Fernando et al US patent 5045289, 1991, C. Shimizu et al., 2005

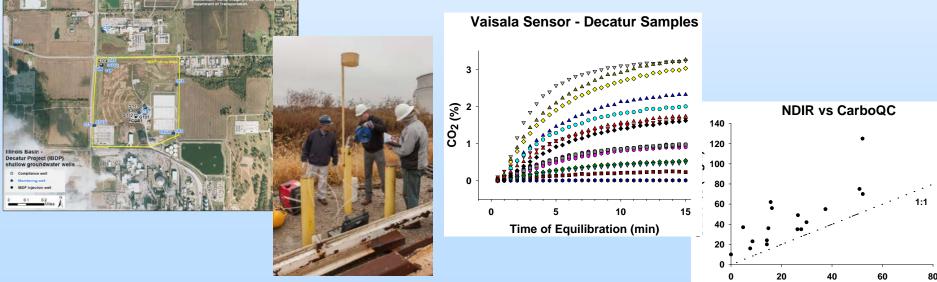
Groundwater Monitoring: Shallow Direct CO₂ Measurements

TECHNIQUES

- 1. CarboQC (CQC)– measure CO₂ via volumetric expansion
 - Grab sampling (i.e. not continuous)
 - Surface or shallow depth (~ 8 60 m) depth using a pump)
 - Measurements directly in the field w/in 2 min. or analysis of sealed field samples in the lab
- 2. NDIR non-dispersive infrared real time analysis
 - Continuous measurement
 - Diffusion across membrane
 - Flow-through system designed for pumped water
 - Diffusion/pressure effects under investigation

Pls – Edenborn, Vesper

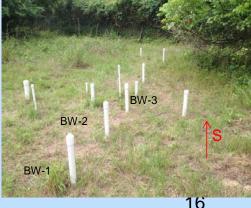
Direct Injection of Sample



Direct Field CO₂ Measurements: Side-by-Side Comparison of Methods (NDIR vs CQC)

- CarboQC and NDIR methods: tested using pumped water from groundwater monitoring wells at the Illinois Basin – Decatur Project (IBDP), in collaboration with the Illinois State Geological Survey
- The CarboQC method was modified to allow direct in-line sampling of pumped water
- The NDIR sensor correlated well with dissolved CO₂ concentrations in the lab and field, but required extended time (>15 min) for gas equilibration across the sensor membrane
- Occasional analytic disparities between the two methods occurred that may be related to water quality and are under investigation

NDIR (mg/L)


Direct Field CO₂ Measurements: Upcoming Field Validation

Long-term monitoring of dissolved CO₂ as part of NSF karst groundwater hydrology study in central PA using NDIR sensors (w/Temple University and Bucknell University)

Side-by-side testing of CarboQC method, NDIR and fiber optic sensors during CO₂ pulse release tests in shallow groundwater wells at Brackenridge Field Laboratory, Austin, TX (w/UT)

See more tomorrow at 12:30 pm – Edenborn

Groundwater Monitoring: LIBS

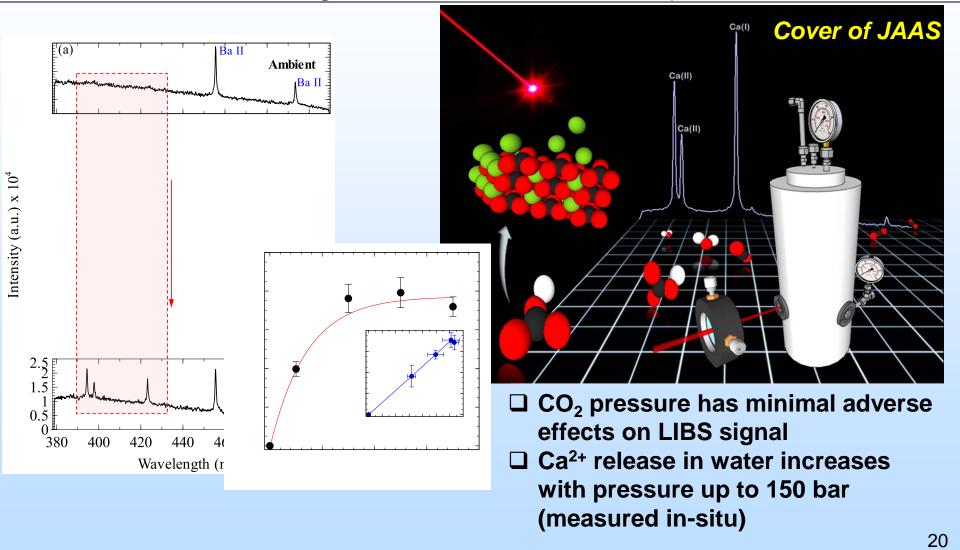
Laser Induced Breakdown Spectroscopy

- How Miniaturized laser technology produces sparks underwater, resulting atomic emission from sparks can be used to measure concentrations (ICP-MS). Probe can be placed down-hole for *in-situ measurements* of groundwater chemistry.
- What Qualitative and Quantitative analysis of brine (Na, Li, Mg, Ca, K, Sr). Concentrations measured from the ppb and ppm range to the % range using synthetic brines in the lab. Measurements performed at elevated pressure (up to 4000psi) in carbonated brine
- When Mark 1 prototype development underway. Atomic interferences and enhancements currently being studied. Anticipated time frame for initial field testing end FY 2017
 Pls McIntyre, Goueguel

LIBS Sensor:

Miniaturization Update

Towards enabling downhole deployment of measurement optics


- Awarded DOE TCF (Technology Commercialization Fund)
- Applied Spectra as commercialization partner
- Supports further development toward the market
- Complete laboratory prototype construction and testing

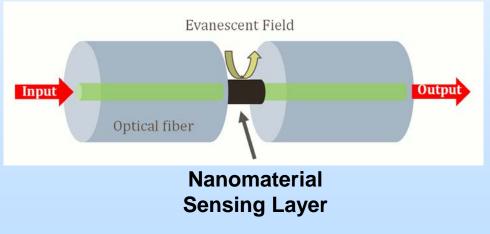
2 Patents, 4 Pending

18

LIBS Sensor: Lab Testing – In-situ Dissolution Experiment

C.L. Goueguel, J.C. Jain, D.L. McIntyre, C.G. Carson, H.M. Edenborn, "In-situ measurements of calcium carbonate dissolution under rising CO₂ pressure using underwater LIBS "Journal of Analytical Atomic Spectrometry. **31**, 1374-1380 (2016).

Groundwater Monitoring:

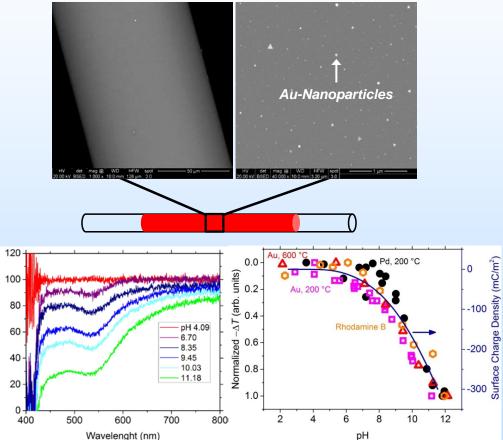


Nanomaterial Enabled Fiber Optic Chemical Sensors

NETL RIC Optical Fiber Sensor Efforts are Targeted at Distributed Chemical Sensing for Environmental Monitoring

Leverage In-House Capabilities in *Functional Materials* and *Optical Sensing*

Nanomaterial Enabled Chemical Sensing Devices


- Engineered Nanomaterials for Chemical Sensing Parameters of Interest
- Versatile and Can Be Applied to Any Environmental Parameters of Interest
- Examples: pH, CO_2 , and CH_4

2 patents pending

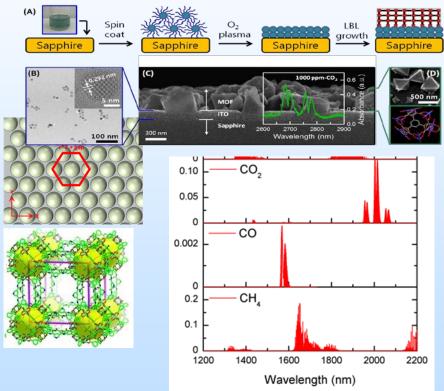
PI – Ohodnicki

Groundwater Monitoring: Plasmonic Noble Metal Incorporated Silica Sensors for **pH** Monitoring in Harsh Environment Applications

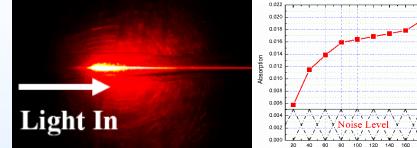
Nanoparticle Incorporated Sensing Layers for pH Sensing in Solution

Fransmission (%)

Optical pH Response Associated with the Silica Surface Charging Behavior


Metal Nanoparticle Based Optical Fiber Sensors:

- Exploiting pH dependent surface charging of silica surfaces for refractive index changes
- Amplified or attenuated optical absorption by metallic nanoparticles
- Tunable pH response range and high temperature stability


PI – Ohodnicki, Wang

Groundwater Monitoring: Plasmonics-Enhanced Metal-Organic Framework (MOF) Nanomaterials for Ultra-Sensitive **CO**₂ **Detection**

Metal-organic framework (MOF) thin films integrated with optical fiber platform

Plasmonic nanoparticle integration with MOFs for enhanced near-IR gas detection.

Plasmonics-Enhanced MOF materials:

- Designed and synthesized indium-tinoxide (ITO) plasmonic nano-crystals embedded in MOF nanomaterials
- Ultra-sensitive CO₂ sensing at 2.8 μm wavelength with 1,000ppm sensitivity

MOF-based Optical Fiber Sensors:

- Developed NIR fiber-optic gas sensor based on MOF-coated fibers for CO₂ sensing
- Detection limit 20 ppm to date
- Ultra-short response time around ~10sec, and MOF enhancement factor > 500x
- Reversible response, and long term stability

Pls – Ohodnicki, Chang, Wang

Key Accomplishments (FY2016)

- Team developed a methodology for high through-put Boron isotope measurements in complex sample matrices using novel sample prep techniques and the MC-ICPMS. (Complementing arsenal of Sr, Li, and U isotope methods)
- Team has used novel in-situ CO₂ field measurement techniques at surface conditions and has built flowthrough cell allowing for little-to-no atmospheric contact to test waters directly from a well.
- Team has identified and eliminated interference (H₂S) with measurements of CO₂ at EOR sites via volumetric techniques (CarboQC).

Key Accomplishments (FY2016)

- In-situ LIBS lab measurements of Ca concentrations during controlled high P&T laboratory experiments of calcite dissolution (ppm levels)
- Lab investigations of interferences and enhancements in ground water LIBS sensing
- FOS lab measurements successfully show CO₂ detection in harsh environments
- Several classes of MOF based materials have been developed for sensitive CO_2 sensing in CO_2 storage applications through integration with the optical fiber sensor platform (with an invention disclosure pending).
- Publication of various journal papers, conference papers, and Patents 26

Synergy Opportunities

- Compile data and results from different field sites throughout the country
 - Look for data trends between types of reservoir, storage conditions, etc.
- Deploy sensing tools and collection methods at different sites – collaboration & tool validation
 - IGS Decatur, IL site
 - FY2017 UT Austin
- Use real world experiences to help inform "best practices" for monitoring

NETL Research Presentations and Posters

TUESDAY, AUGUST 16, 2016

- 12:40 PM Monitoring Groundwater Impacts Christina Lopano
- 1:55 PM Multi Variate Examination of the Cause of Increasing Induced Seismicity Kelly Rose
- 4:40 PM Exploring the Behavior of Shales as Seals and Storage Reservoirs for CO₂ Ernest Lindner
- 5:05 PM Risk Assessment for Offshore Systems <u>Kelly Rose</u>
- 5:30 PM Metal-based systems in Extreme Environments Jeff Hawk
- 6:15 p.m. Poster Session
 - Kelly Rose Developing a carbon storage resource assessment methodology for offshore systems
 - Doug Kauffman Catalytic Conversion of CO2 to Ind. Chem. And eval. Of CO2 Use and Re-Use
 - Liwel Zhang Numerical simulation of pressure and CO2 saturation above an imperfect seal as a result of CO2 injection: implications for CO2 migration detection

WEDNESDAY, AUGUST 17, 2016

- 12:30 PM MVA Field Activities Hank Edenborn
- 1:20 PM Microseismicity –<u>Erik Zorn</u>
- 2:35 PM Resource Assessment Angela Goodman
- 2:35 PM Understanding Impacts to Air Quality from Unconventional Natural Gas <u>Natalie Pekney</u>
- 4:05 PM Improving Science-Base for Wellbore Integrity, Barrier Interface Performance <u>Nik Huerta</u>
- 5:20 PM Wellbore Integrity and Mitigation <u>Barbara Kutchko</u>

THURSDAY, AUGUST 18, 2016

- 1:00 PM Advances in Data Discovery, Mining, & Integration for Energy (EDX) <u>Vic Baker</u>
- 1:25 PM Methods for Locating Legacy Wells <u>Garrett Veloski</u>
- 2:40 PM Reservoir Performance Johnathan Moore
- 3:05 PM Geochemical Evolution of Hydraulically-Fractured Shales <u>Ale Hakala</u>

<u>https://edx.netl.doe.gov/carbonstorage/</u> <u>https://edx.netl.doe.gov/offshore/</u> https://edx.netl.doe.gov/ucr/

Appendix

Organization Chart

8.1.1	Natural Geochemical Tracers in Groundwater (FY16)	Develop and demonstrate a protocol for the use of a combination of natural geochemical tracers (e.g., isotopic, trace elements, etc.) to monitor groundwater systems.	Hakala, Phan, Stewart (Pitt)
8.1.2	Continuous CO2 Monitoring Devices (FY16)	Understand the response and limitations of CO ² monitoring devices (volumetric expansion and NDIR) relative to CO ² detection, including in the context of potential interference by other constituents (e.g., H ₂ S)	Edenborn, Vesper (WVU) , Jain
8.1.3	Development and Assessment of LIBS for Measurement of CO ² Impacts in Groundwater (FY16)	Develop and demonstrate LIBS as a tool to monitor chemical signals to groundwater that reflect potential impacts to groundwater resulting from the introduction of CO ₂ and/or brine.	McIntyre, Jain, Carson, Goueguel
8.1.4	Fiber-Optic Technology for Downhole Measurement of Potential Groundwater Impacts (FY16)	Develop novel materials for and demonstrate FO-based tool(s) to monitor the introduction of CO ₂ and/or brine into groundwater systems either by direct measurement of CO ₂ or by other geochemical indicators such as pH	Ohodnicki, Kim, Zhang, Chong

Organization Chart (cont'd)

8.3.1	CO2-Water-Rock impacts on Groundwater Signals (FY16)	This activity is focused on experimental studies on samples from a variety of aquifer classes to identify expected behavior of geochemical signals in response to the introduction of CO ₂ and/or brine, focusing on how the responses change based on aquifer class and what aquifer characteristics control the aquifer response. Indicators that will be investigated include inorganic and organic signals, mineralogy changes, and isotopic signatures.	
8.3.2	Microbiological Impacts and Responses (FY16)	Characterize the taxonomic and functional change of microbial community in CO ₂ exposed environments. This activity will focus on obtaining relevant groundwater samples with either in situ or ex situ CO ₂ exposure, and analyzing the metagenomics profile. Metagenomic analysis will focus on microbial stress response, as well as microbial processes that may affect reservoir behavior and water quality, such as metal and sulfur metabolism, acid production, and biofilm production	Gulliver, Lipis

Gantt Chart

	Project Dates for each Task/Subtask		FY16	
	Start	Finish	Q1 Q2 Q3 Q4	
8. Methods for Monitoring Migration of CO2/Brine Plumes and Groundwater Impacts	10/01/2015	09/30/2019	^{M1.16.8.A} △ ^{M1.16.8.E}	
8.1 Geochemical Monitoring Tools and Protocols for Groundwater Systems	10/01/2015	09/30/2019		
8.1.1 Natural geochemical tracers in groundwater	10/01/2015	09/30/2016		
8.1.2 Continuous CO2 Monitoring Devices	10/01/2015	09/30/2016	<hr/>	
8.1.3 Development and Assessment of LIBS for Measurement of CO2 Impacts in Groundwater	10/01/2015	09/30/2016	< · · · · · · · · · · · · · · · · · · ·	
8.1.4 Fiber-Optic Technology for Downhole Measurement of Potential Groundwater Impacts	10/01/2015	09/30/2016	• • • • • • • • • • • • • • • • • • •	
8.2 Forward Modeling of Remote Sensing/Geophysical Monitoring Tools	10/01/2015	09/30/2018		
8.2.1 Evaluation of Non-wellbore Based Methods to Determine the CO2: Brine Interface Location in Storage Reservoir	10/01/2015	09/30/2016	• • • •	
8.2.2 Routine Surveillance to Detect CO2 or Brine Incursions into USDW	10/01/2015	09/30/2016	<	
8.3 Fundamental Controls on Groundwater Composition	10/01/2015	09/30/2018		
8.3.1 CO2-Water-Rock impacts on groundwater signals	10/01/2015	09/30/2016	•	
8.3.2 Microbiological impacts and responses	10/01/2015	09/30/2016		
9. MVA Field Activities		09/30/2020	M1.16.9.A M1.16.9.B	
9.1 Groundwater monitoring - Field Testing and Signal Validation	10/01/2015	09/30/2019		
9.1.1 Field work planning and coordination	10/01/2015	09/30/2016	د ا ,	
9.1.2 Comprehensive groundwater field testing	10/01/2015	09/30/2016	<u>د ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،</u>	
9.1.3 Field validation of direct CO2 sensors	10/01/2015	09/30/2016	· · · · · ·	
9.1.4 Statistical Evaluation of Baseline Field Data	10/01/2015	09/30/2016	<u>ج</u>	
9.1.5 Forward modeling of geochemical leakage signals	10/01/2015	09/30/2016		
9.2 Analytical Support for the SW Partnership Farnsworth Field Project		09/30/2018		
9.2.1 PFT Analysis	10/01/2015	09/30/2016	I ← →	

Bibliography

Technical Papers

- Goueguel, C., Jain, J., McIntyre, D., Sanghapi, H., Carson, C., Edenborn, H., "In-situ ٠ measurements of calcium carbonate dissolution under rising CO2 pressure using underwater laser-induced breakdown spectroscopy," J. Anal. At. Spectrom., 2016, DOI: 10.1039/C6JA00086J.
- Bol'shakov, A., Mao, X., Jain, J., McIntyre, D., Russo, R., "Laser Ablation Molecular Isotopic ٠ Spectrometry of carbon isotopes," Spectrochimica Acta Part B: Atomic Spectroscopy, doi:10.1016/j.sab.2015.08.007
- "Near-infrared absorption gas sensing with metal-organic framework on optical fibers", X. Chong, ٠ K. J. Kim, E. Li, Y. Zhang, P. R. Ohodnicki, C. H. Chang, and A. X. Wang, Sensors and Actuators B: Chemical 232, 43-51 (2016).
- "Ultra-sensitive CO2 fiber-optic sensors enhanced by metal-organic framework film", X. Chong, K. ٠ J. Kim, Y. Zhang, P. R. Ohodnicki, C. H. Chang, and A. X. Wang, CLEO: Applications and Technology, JTu5A 138 (2016).
- "The effect of ionic species on pH dependent response of silica coated optical fibers", J. Elwood, ٠ P. R. Ohodnicki, SPIE Defense and Security, 98360I-98360I-8 (2016).
- "Ultra-sensitive near-infrared fiber-optic gas sensors enhanced by metal-organic frameworks", X. ٠ Chong, K. J. Kim, E. Li, Y. Zhang, P. R. Ohodnicki, C. H. Chang, A. X. Wang, SPIE BiOS, 970207-970207-7 (2016).
- C.L. Goueguel, D.L. McIntyre, J.C. Jain, Opt. Lett. submitted August 2016 ٠
- Tracking Brine Leakage at a CO₂-Enhanced Oil Recovery Site using Multiple Metal Isotopes" is in ٠ preparation 33

Bibliography

Patents/Invention Disclosures

- Woodruff, S.D., McIntyre, D.L., "Laser based analysis using a passively Q-switched laser" U.S. Patent 9,297,696 March 29, 2016.
- Invention Disclosure Submitted at Oregon State University Joint with NETL, "High Electronic Conductivity MOF-based Materials for Chemical Sensing Applications", K. J. Kim, C. H. Chang, P. R. Ohodnicki, A. X. Wang (2016).

Presentations

- Jain, J., Bol'shakov, A., Sanghapi, H., Lopano, C., McIntyre, D., Russo, R., "Determination of elemental composition of shale rocks by laser induced breakdown spectroscopy (LIBS)," SciX 2015, Providence, RI, Sept 27-Oct 2, 2015.
- McIntyre, D., Goueguel, C., Carson, C., Sanghapi, H., Jain, J., "<u>Using LIBS to determine ground</u> water quality changes due to subsurface activities" SciX 2015, Providence, RI, Sept 27-Oct 2, 2015.
- McIntyre, D., "Laser induced breakdown spectroscopy (LIBS): A potential tool to study impacts of CO2 leakage on ground water quality," Pacifichem 2016, Honolulu, HI Dec 2015.
- McIntyre, D., "Compact laser spectroscopy for downhole sensing applications," TechConnect Innovation Conference, National Harbor, MD May 2016.
- Jain, J., McIntyre, D., Goueguel, C., "Laser induced breakdown spectroscopy (LIBS): A potential tool to study impacts of CO2 leakage on ground water quality," CCUS conference, Tyson's Corner, June 2016

Bibliography

Posters

- Jain, J., Bol'shakov, A., Mao, X., McIntyre, D., Russo, R., "Determination of carbon isotopes in coal by laser ablation molecular isotope spectrometry (LAMIS)," Pacifichem 2015, Honolulu, HI, Dec 15-20, 2015.
- Edenborn, H.M., D.J. Vesper, J. Jain, A. Iranmanesh, B.T. Wimmer, and R.A. Locke. Comparison of CO₂ detection methods tested in shallow groundwater monitoring wells at a geological sequestration site. 2016 Midwest Carbon Sequestration Science Conference, Champaign, IL, May 16-17, 2016.
- Edenborn, H.M., D.J. Vesper, J. Jain, A. Iranmanesh, B.T. Wimmer, and R.A. Locke. Comparison of CO₂ detection methods tested in shallow groundwater monitoring wells at a geological sequestration site. Geological Society of America North Central Section Annual Meeting, Champaign, IL, April 18, 2016.
- Edenborn, H.M., D.J. Vesper, J. Jain, and J.A. Hakala. Influence of H₂S on the analysis of CO₂ using the volumetric expansion method in well waters associated with CO₂-enhanced oil recovery. Geological Society of America Northeastern Section Annual Meeting, Albany, NY, March 21-23, 2016.

Awards

• TechConnect Innovation Award "Compact Laser Spectroscopy for downhole sensing applications"